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ABSTRACT

Electron density deviations from a basic variation with the

solar zenith angle are investigated. A model study has been

conducted in which the effects of changes in neutral and relative

densities of atomic and molecular oxygen on calculated electron

densities have been compared with incoherent scatter measurements

in the height range 100- 117 km at Arecibo, Puerto Rico. The

feasibility of determining tides ► n the neutral atmosphere from electron

density profiles was studied. It was determined that variations in

phase between the density and temperature variation and the

comparable magnitudes of their components makes it appear

improbable that the useful information on tidal modes can be obtained

in this way.

40
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CHAPTER I

GENERAL STATEMENT OF THE PROBLEM

1. 1 E-Region Morphology

Appleton (1953) discussed the differences in time between

the maximum of ionization and the maximum of production in terms

of the ''sluggishness'' of the E-region. Rescarchers (Mitra, 1958;

Appleton. and Lyon, 1961; and Palluconi, 1963) attempted to

determine the recombinaticn rate, a, of the E-regio- by observing

asymmetries about noon in foE using the charge continuity eq,-iation.

The lag or sometimes lead value Y was employed, While many

attempts were made to calculate recombination rates in this way it

became apparent with modern laboratory measurements (Biondi,

1964) that the time constants were too small to account for the

effect and that the explanation of the phase differences must be else-

where.

Mon.ro, Nisbet and Stick j1976) in the first part of the present

study demonstrated that local noon asymmet: ies in the E-region

electron der.-s_ty were caused by tides in, temperature, density, and

wines as -measured by incoherent scatter. They demonstrated that

the effect of the semidiurnal tide ors the atomic and molecular oxygen

densit"es may also be an important factor in explaining E-region

asymmetries.

These studies can only be done at a very few locations none

of which are in the southern hemisphere. The global tidal variations

are extremely important in determining the mode structure and

9
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j
wider geographical coverage is necessary before the tidal +morphology

can be resolved. The tidal variations in the lower thermosphere have

been shown to be very variable (Wand and Perkins, 1970; Salah and

Ward, 1974; and Fellous et al. , 1975) and thus a long series of

observations is desirable. It, therefore seemed important to
t A

reexamine the studies that had been made of E-region changes to

determine to what extent the data can now be used to study the tides.

A complete analysis of the electron density at fixed heights is

necessary to determine morphology of the tidal system. Some

indication may, however, be determined from the one parameter

that has been extensively studied, T , the difference in time between

the minimum solar zenith angle and the maximum electron density.

Palluconi (1963) has shown that T varies with latitude such that it is

generally negative for equatorial stations becoming positive at 20 0	.^

and reaching a peak at 4&. The value of T is gene rally symmetric

about the equator dur i ng equinox with a shift in the minimum from
I

the equator toward the winter p,)le during solstic q . The general

seasonal response for high latitude stations is a maximum value of

T in the summer with a minimum in the winter and generally a

n e gative value throughout the year for equatorial stations. Since the

number of southern hemisphere stations is minimal it is not possible

to conclude with great certainty the tidal effects simultaneously in

both hemispheres from previous studies. Data is availably in the

World Data Center for several years that could, however, be

analyzed.
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1.2 Solar Fluxes

The solar wavelengths of importance in photoionizing the

E-region have been reviewed by Rishbeth and Garriott (1969) and

Banks and Kockarts (1973). X-rays from 8 to 140 A are important

in ionizing the three major constituents, molecular nitrogen and

atomic and molecular oxygen. in the lower E-region, particularly in

times of enhanced solar activity. The EUV flux. from i40 to 781:

is important ir, ionizing molecular nitrogen. and atomic oxygen in the

upper E-region. Wavelengths from 786 R to 1027 R are important

with molecular nitrogen being ionized up to 796 R, atomic oxygen

up to 911 R and molecular oxygen up to 1027 R including Lyman P. n

Nitric oxide is a very minor constituent in the upper atmosphere

•	 however as was show y_ by Nicolet and Aitkin (1959) it is of importance

in the D-region and lower E-regior. becat.se of its aollity to be

photoionized up to 1340 R which includes H Lyman a.

Donnelly and Pope (1973) compiled the results of different

solar flux measureme:_ts and normalized them to a 10. 7 cm flux of

150 x 10- 
22 

Wm -2 Hz - 1 at 1 AU. Their soar flux model includes

wavelengths of 1 to 3000 R. As sr.own by Hall and Hinteregger (1970)

care must be uied when apply:^g a flux model for a different 10.7 cm

flux value then for the measurement conditions. Table 1 shows the

solar flux val l:es of Hinteregger et al. , (1965) for low solar activity,

0HHS, and of Donnelly and Pope (1973) for medium solar activity,

0DP`

Variations in EUV spectral linen over one solar rotation

period of 27 days have been reported by Hall and Hinteregger (1970)
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Jisbet and Stick (1976) have

6

compared with the 10.7 cm flux which ranged from 100-200 x 10-22

Wm -2 Hz_ 1 . The ratio of the fluxes 284 R to 304 R was shown to

increase by 200 per cent as the 10.7 cm flux increased from 100 to

200 x 10 -22 Wm-2 Hz - 1 . The combined fluxes of 1025 Ao , 977 R,

584 R anc 304.9 increased by 70 per cent as the 10.7 cm flux

increased from 60 to 160 x i0 -22 Wm-2 Hz-1.

A discrepancy has beer. shown to exist between the results of

j	 ion densities calculated using current neutral atmospheric models

and photochemistry with the fluxes of Hir_teregger (1970) and

observations of ionosphere parameters. Swartz and Nisbet (1973)

comparing profiles of energy input and loss with similar profiles

of ion production and loss concluded that the EUV fluxes needed to be

multiplied by a factor of two. Mitra et al. , (1974) found the fluxes

of soft x-rays to be incompatible with the observations of electron

density and the ratio of [NO] / [O +] in the altitude range of 90 to

130 km, It was shown that an increase by a factor of t^ ree for the

soft x-rays is needed to reconcile calculations and observations.

Hercux et al. , (1974) modeled the region of 110 to 300 km and found

an electron density that was generally low by 30 per cent compared

with an electron density profile derived from an ionogram. They

concluded that the error was prubably in the density :measurements.

Nisbet (1975) showed that a general doubling of the flux would increase

the electron densities to match the experimental values, Heroux et

al. , (1975) replied that while a doubling of the flux would help at the

lower altitudes the increase at the upper altitudes would be too great.
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shown that the atomic oxygen is very variable and can differ greatly

from models such as CIRA 1972. It is difficult to obtain absolute

values for solar fluxes corresponding to given solar conditions. The

discrepancies appear to be greater under high solar conditions than

fur low activity (Miller and Nisbet, 1974). All of these factors

contribute to making such comparisons difficult.

Ionization cross sections were reviewed by Ohshio et al. ,

(1966). The absorption cross section along with the photoionization

yield for the major E-region neutrals, N 2 , O Z and O corresponding

to different regions of the EUV and x-ray spectrum are listed in

Table 1. Swider (1969) described the production of secondaries by

x-rays as a function of the total production, the density of the

constituents and the wavelength intervals. The total ion-electron

pair production rate q was shown to be distributed among the

different ions according to the ratio 0.62 : 0. 17 : 0. 14 : 0.07 : 1.00

for q(NZ) q(O2)	q(N+
) qiO+) gtotal°

1.3 E-Region Tides

Absorption of solar energy by ozone in the strato-mesosphere

causes waves to propagate into the thermosphere. Chapman and

Lindzen (1970) modeled the atmosphere and derived variations in

temperature, wind and density in terms of altitude, latitude and

local time. Richmond (1971) included dissipative effects which

res;;lted in a dampening of the diurnal (1, 1) mode above 105 km

while the semidiurnal modes were free to propagate through the

region. Bernard and Spiaaichino (1971) using incoherent scatter

techniques were able to show that the semidiurnal tide dominated
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both wind and temperature oscillations above 100 km. At altitudes

below 100 km the diurnal tide, the semidiurnal tide and gravity

waves have comparable amounts of energy. Salah (1974) observed

a dominant semidiurnal tide in the lower thermosphere in both

temperature and meridional winds corresponding to the (2, 4) model.

Lindzen and Hong (1974) developed a program which showed a great

amount of mode coupling between the main semidiurnal mode (2, 2)

and higher modes which results in higher modes of the semidiurnal

tide dominating above 100 km and a reduction in the amplitude of the

(2, 2) mode.

Salah et al., (1975) discussed results from three incoherent

scatter stations for the lower E-region. A good agreement in both

magnitude and phase if the average semidiurnal tides was found for

Millstone Hill and St. Santin. The tide was identified as a (2, 4) mode.

The oscillations at Arecibo were dominated by the semidiurnal tide

however great variability in phase was observed. The implications

of simultaneous experiments at the three stations are that the

E-region is controlled by local effects,

Seasonal variations of the tides were observed by Salah and

Wand (1974) for Millstone Hill and St. Santin revealing a smaller

amplitude in the semidiurnal tide during the winter than during the

summer or equinox due to a larger phase variability in the winter.

Salah (1974) using incoherent scatter data showed the neutral

density variations to be semidiurnal and in phase with the temperature

at the lower E-region altitudes. The variations for the neutral

density were of the order of a factor of two while temperature varied

by 11 per cent.

i
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Mayr and Vollank (1972) used a neutral atmospheric model to

predict that the atomic oxygen density would vary diurnally with a

maximum shifted toward early morning by the zonal wind and toward

later afternoon by vertical diffusion in the daytime. The net result

is a maximum at 1030 local solar time. Alcayde et al. , (1972)

using measurements of satellite drag and incoherent scatter show

atomic oxygen variations at 120 km, extrapolated down from higher

altitudes, to have a dominant diurnal mode with a superimposed

semidiurnal mode. There are maximums at 900 and 1 ; 00 hours with

a minimum at 1200. The ratio of maximum to minimum is

approximately 1. 5. Danilov (1972) using rocket mass spectrometer

data derived a model of atomic oxygen starting a^ 130 km for low,

moderate and high solar activity. For all three solar conditions

the model shows a diurnal variation in atomic oxygen with a maximum

at 1300 hours. During moderate activity a ratio of two is reported

for maximum to minimum density at 130 km. Offerman (1974)

using rocket measurements finds a maximum in molecular

nitrogen to occur at 1400 hours at 150 km. Molecular oxygen was

found to have a diurnal variation with a maximum at 900 to 1000 hours

f	 with a 20 per cent variation.

1.4 Ion Chemistry

The major neutral constituents photoionized ir. the E- region

are N 2 , 0 2 anti O. Nitric oxide ionized by H Lyman a is also of

importance. The photochemistry of the E-region has been reviewed

by Biondi (1969), Bortner et al., (1972) and Ferguson (1974). The

rates used in this work have been determined from a review of current
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literature. They are presented in Table 2.

1.5 Sporadic E and Tides

Whitehead (1961) explained sporadic-E formation as being due

to vertical wind shears in the horizontal neutral winds. Whitehead

(1967) elaborates c n his original explanation by demonstrating that

the existence of a second ion with a smaller recombination rate, such

as a metallic ion, could explain the general shape of the sporadic-E

layer. The theory showed that the vertical wind shear of the zonal

wind was more important than that of the meridional in the lower

E-region for forming a sporadic-E layer.

Wright et al., (1967) observed neutral winds from visible

trails of gun launched vehicles in conjunction with radio soundings

of the sporadic-E layer. Their results show that sporadic-E occurs

where the vertical ion movements converge. The wind profile was

observed to descend at the rate of two vertical wavelengths in 24

hours.

J
I	 MacDougall (1974) used the theory of wind shear to determine

I
characteristics of the neutral zonal winds in the lower E-region

from ionogram measurements of the sporadic-E layer altitude and

it's descent with time. He assumed that the sporadic-E layer formed
t

where the neutral wind above had a westward direction and the wind

!

	

	 below an eastward direction for layers existing below 115 km. Above

about 120 km the vertical shear in the north-south neutral wind
i

determined the convergence of ionization. The ionogram data on

the sporadic-E layer height evolution revealed three general patterns;

a
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a semidiurnal, a diurnal, and a steady wind component. The semi-

•	 diurnal wind component predominated in the :riddle iat ► tudes while

being spas se in the equatorial zone and at high latitudes. The results

indicated a mixture of several semidiurnal modes. The semidiurnal

components were found to be in goodgood agreement with that of Bernard

and Spizzichino (1971). The diurnal component was found mainly for

equatorial stations and weak in the micdle latitudes, The steady

wind component was observed to be generally eastward in a band of

t 10 0 of the equator and generally westward in the region of 10 0 - 300

from the eouator.

Harper et al. , (1975) found the speradic-E layer to move in

accord with the convergence rode in tre vertical ion motion, Above

124 k_m the derived wind in the north-south direction had a node

near the sporadic-E layer with a poleward wind above and an egi.atorial

wind below.

Nighttime E-region ionization sources have beer. reported

by Yo-.jig et al., (1971), Fujitaka et al., (1971), Tohnson (1972) and

Strobel ;1974) to be primarily H Ly-nar. f3 irterpia netary emission

of HeI504 R and He 1; 304.9, starlight from .026 to 910 A and a

miner contribution from H Lyman a. Fi- .ta* a et al., (:971) observed

peak electron density layers in con .'unct ► on with rocket measurements

of vertical ion velocity. he layers of peak density were found to

occur where the u-_s converged. The points of convergence were

fountt to descend throughout the night. Geller et al. , (1975) using

nighttime rocket meast.rements of electron dens.ty in the continuity

equation were able to reconstruct the vertical ion drifts. The drift
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velocity was a function of the shape of the enhanced ionization layer.

The ion drift so determined indicated a tidal wind of the (2, 4)mode.

1.6 Specific Statements of the Problem

1. To investigate the effects of variations in neutral density,

vertical ion velocity and temperature on the E-region electron density

profiles and to determine the importance of each in making midlatitude

electron density models.

2. To study effects of tides in the E-region on the electron

densities and to examine the feasibility of determining tidal

information from electron density profiles.

3. To compare measured solar fluxes and electron ion

densities with that of a model and to examine causes of any

discrepancies found.

I

T



CHAPTER II

E-REGION MODEL

2. 1 Neutral Model Atmosphere

The E-region is considered to be that part of the ionosphere

immediately above the turbopause ar-d therefore its' major neutral

constituents may be assumed to follow a molecular diffusion profile.

As such the altitude profiles of the major constituents O, 02 and N2

are determined by the individual scale heights

n 	
H. =	

k T	 (2.1)
I	 m  g

i

where

k	 is Boltzmann's constant

T is the neutral temperature

g	 is the acceleration due to gravity

m
i 

is the molecular weight of the i th constituent

having the height relation for element r.i

z

n i (z)	 -	 ni	
To /T(z)	 e_Kp	 Ha(z)

0	 0

(2. 2)

M&
where n i and T o are the number density and temperature respectively

0
of constituent i at altitude z

0 
and T(z) is the temperature at altitude z.

For the initial model it was assumed that the relative densities of O,

02 and N 2 at each height was as given in CIRA (1972). The density
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of the minor constituent nitric oxide was taken to be the model values

reported by Meira (1971). These were in sore, cases modified as

will be described later. The total amount of any one constituent

above the considered altitude can be approximated by

CO

n  dz = n 	 H i	(2.3)
0	 0

0

Values of ion collision frequency and ion temperature were

obtained by analyzing the incoherent scatter data from Arecibo,

Puerto Rico for the six altitudes 100, 104, 107, 110, 114 and 117 km.

The total neutral density was derived trvm the ion collision frequency

by the relationship of Banks (1966). Because the accuracy of the

temperature measurements is greater than the accuracy of the 
n

collision frequency measurements at the upper and lower ends of

the altitude range of interest,an averaging procedure based on

diffusion equilibrium was used. Diffusion equilibrium can be

assumed since the vertical accelerations induced by the vertical

motior s, including the tides, are much smaller than that due to

gravity. It is thus much better to use all the collision frequencies

meas_red to derive a best estimate of the collision frequency of each

mea s•arement and the ccrresponding temperature. This average

collision frequency can then be used to derive the neutral densities

at the six altitudes using scale heights calculated from the

temperature measurements. In this work the collision frequencies

E
	 were normalized to 110 km according to the formula
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1 1

V .	 = v T./T	 ex p 	(z - z 1	 1	 +	 1J 1 10	 j J 110	 2k L	 n	 m( TM 	Tn
j	 J

(2.4)
L

Î '	 where vj110 ' s the collision frequency at 110 km based on the jth

altitude and v.
J 

is the measured collision frequency at the jt., altitude.

The average v110 can then be calaculated as

v.	 2

v j110	 Qj

v110	 v	 2	 (2. 5)

.	 j	 ^J

where a- j is the error in collision frequency at the j th height.

The measured ion temperatures were assumed to be equal

to the neutral temperatures as shown by Nisbet (1967) for E-region

altitudes. As the accuracy of the temperature measurem ^nts was

considerably better than that of the ion collision frequencies, the

redu-ed temperature measurements were adopted for each height.

2.2 Solar Effects and Photoionization

The equation for calculating the production of ionization by

solar photons can be derived using the well known equation (2.6),

see for example Rishbeth and Garriott (1969),

Q(k, z) = F @iOD expr-sec X F rr ij Hj (z)	 1: yij v ii nj(z)
i	 L	 j	 J j

(2.6)
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P

'rv1l;:re the subscripts i and j refer to the wavelength group and the

individual constituents respectively and

Oi cc	 is the photon flux outside the earth's atmosphere at one

astronomical unit.	 I

X	 is the solar zenith angle.

Tij	 is the total absorption cross section for constituent j

and wavelength i.

Hi (z) is the scale height of the j th constituent.

y..
t^
	is the photoionization yield for constituent j and

wavelength group i.

nj (z) is the density of the j th constituent.

Values for 
a-ij 

and yij were taken from Ohshio (1966) and are listed

in Table 1. The individual neutral densities and scale heights were

computed as explained in section 2. 1. The photon flux for each

wavelength group was taken to be the Hinteregger et al., (1965) value

repeated on Table 1. The angle X was calculated as a function of

time of day, latitude ar_d solar declination.

C	

11

	

X = Arcrusine sin (g) s,n (6) + cos (g) sin (b) cos 	 2n (HL - 12)I	 24	 /J
(2.7)

where

g	 is the geographical latitude.

HL is the local solar time in decimal hours.

b	 is the solar declination. angle.
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In this study it has been assumed that

.40915 cos	 2 7(D 25 8) ] radiar_s	 (2.8)

where D is the day number.

The effect of secondaries being formed by x-rays was modeled

according to the method described by Swider (1969). First the

total production was determined as stated above accounting for

increased production through the ionization yield. By energetic

photoelectrons the ion production becomes

1, 15 [ .29 n (O 2 ) + , 5 n (0)] /r_ (N 

2 )q(0+)	 1 + i ^ 5 _^_(0 2 )+ . 5 (0) /n (N 2 )	 gTOTAL
(2.9)

+	 1. 5 [ , 71 n (0 2 )] /n (N2)
g(02)	 i + 1. 5 n (U 2 ) + . 5 n (0) n (N2)	 g TOTAL

(2.10)

q(NZ) _	 .81 [ g TOTAL - (g(O t) + q (0211]	 (2. 11)

q(N +) _ .19 [ g TOTAL	 (q(O+) , q (OZ))]	 (2. 12)

S = -

Equations (2, 9) through (2. 12) have the effect of distributii g the

total ion-electron pair production rate q among the various ions as

W.

i
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0.62: 0. 17 : 0. 14 : 0.07: 1.00 for q(N2) q(O2) q(N + ) ; q(O +) q

as reported by Swider (1969) for the E-region.

2.3 Chemistry

The ion neutral reactions of importance in the E-region used

in this work were reviewed by Biondi (1969), Bortner et al. , (1972)

and Ferguson (1974). Data was available for the ion temperature

which was included into the electron density model. Those rates

which varied as a function of temperature did so according to an

inverse law (T ) -a where a is a measured quantity.

A reaction scheme including the more important reactions

(Ferguson., 1974) is shown in Figure 1. The steady state of the ion

densities is solved using the continuity equation

d[ n j]

	

dt	 =	 Q(n.) - 1(n.) + p(n.) - div (n, v.) 	 (2. 13)
J	 J	 J	 J J

where

Q(nj )	 is the photoionization of species nj.

1(n.)	 is the loss due to ion-neutral charge transfer.

	

J	 n

p(.ij )	 is the gain due to ion-neutral charge transfer.

div (n.
J 

v.) is the divergence of the flux n 
J

. v 
J

..

J 

The equation is solved for the five ions 0 	 N2 and NO 	 While

N2 is a major ion produced because of its large concentration, it

is not an abundant ion in this region because of its fast reactions

with 0 2 and O. Because of their low ionization potentials most

ionization takes the form of NO + or 02.

I I ^
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2.4 Ion Transport

Several authors (Monro, 1970; Strobel, 1974; Ogawa and

Shimazaki, 1975) have concluded that the effects of ion drift in

the E-region are neglegible. In this study interest was centered

around exploring rather small departures from simple solar zenith

angle dependencies and therefore in every minor contributing effect.

The ion drift velocities were measured at the Arecibo

incoherent scatter facility in the vertical direction for the E-region

along with the electron densities. The effect of ion drift velocities

on the electron density was investigated by its inclusion in the

continuity equation through the divergence term div (n i v). An idea

of the effect of the divergence term can be obtained by assuming that

the departures from photoequilibrium are small and that the

dominant recombination process is dissociative and can be

represented by a coefficient a. With this approximation at 117 km

when the electron density vertical gradient is small the perturbation

from a photoequilibrium density is

a

where v is the vertical velocity and at 100 km when the vertical

gradients in velocity are small

	

_	 v	 1	 d n 

	

ne v	2 a	 n	 dze
(2. 15)
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CHAPTER III

DISCUSSION OF THE ANALYSIS

3. 1 Causes of Electron Density Variations

Electron densities measured by incoherent scatter sounding

were compared with calculations derived from the model described

in section 2. 1. The incoherent scatter measurements provided

the following information:

1. electron density,

2. collision frequency in the region of 100 to 117 km. This

can be used to extract the total density.

_	 3. temperature,

4. vertical amplitude of the ion drift.

An examination of model and experimental electron density

profiles in the E-region shows very clearly two regions, a higher

region where the electron density gradient with altitude is very small

and a lower region of large vertical electron density gradient.

Varying the total solar flux has the effect of multiplying the electron

density profile by a constant factor at all altitudes. Varying the

total density has the effect of varying the height of the profile without

changing its shape. A multiplication factor for both the density and

solar flux was chosen for each set of data corresponding to measure-

ments of one day.

This study investigated , the effect of variations in density,

pressure, temperature, vertical ion drift velocity and atomic and

molecular oxygen density on the electron density calculated from
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1

Some idea of the vertical velocities in this height range can be

obtained from Harper et al., (1975) who found at Arecibo divergences

of vertical velocities at 117 km of the order of 6 x 10 - 3 sec - 1 and

i	 vertical velocities of less than 5 m sec - 1 at 100 km.

Using these formulae with the values estimated above from

Harper et al., (1975) wind measurements give values of A n
e e
/n of

the order of 0. 1 at 117 km and less than 0, 01 at 100 km, The effect

at 100 km is not large but at 1 17 km is not negligible compared to

the morning to afternoon differences.
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the model described in Chapter II. 	 The investigation was

separated between the two regions as described previously with the

division occurring at about 110 km.

The sensitivity of the electron density to changes in the

neutral density, pressure, temperature, ion drift, and relative

atomic and molecular oxygen were investigated in the lower region.

Sensitivity factors for density, pressure and temperature were

determined by allowing the model to be varied by one of the three

parameters and the resulting electron density compared with model

results when no parameters varied. The calculations were done

for three days, August 12, 1974, September 17, 1974 and September

18, 1974 and the results are shown in Tables 3, 4, and 5, From

the relative changes in the electron density due to the three parameters

it is evident that no one parameter consistently dominates in the J
lower E-region As discussed in section 2. 4 the relative change

in electron density at 100 km due to vertical ion drifts is on the

f	 order of . 01. In Figure 2 the contours of electron density as a

function of atomic and molecular oxygen are shown for 100 km. The
'.I

electron density is seen to be almost independent of atomic oxygen.

The maximum sensitivity of electron density to molecular oxygen

variations is .05.

The same analysis was performed on the upper region. Again

consistently dominated over the other two. As shown in section 2.4

the vertical wind velocity accounts for a relative change in electron

density of . 10 which is of the same order of magnitude as that due to

F.
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density, pressure and temperature variations. The contours of

electron density as a function of atomic and molecular oxygen arc

.n
shown in Figures 2 and 3 revealing a dependence of electron density

•	 on both constituents. The maximum gradient or sensitivity is .05 for

atomic oxygen and .0Z for molecular oxygen.

3.2 Feasibility of Determining Neutral Parameters from Electron
Density Variations

The three days, August 12, 1974, September 17, 1974 and

September 18, 1974 were used to investigate the feasibility of

determining variations in the neutral atmosphere from deviations

in electron density from a basic secant X variation in electron density.

If one of the parameters totally dominated the others in causing

•	 electron density variations it would be possible to work back from the

electron density to obtain that parameter's variation. From Tables

3, 4, and 5 it is seen that the relative changes in the electron density

corresponding to changes in the temperature, density and pressure

are comparable implying that the electron density variations do not

reflect a variation in just one parameter.

If there existed a relationship among the atmospheric param-

eters it would be possible to determine their variations. For the

three days examined there existed a prevalent semi-diurnal tide.

At 100 km the phase difference between the temperature and the

density were 2, 7 and 0 hours for August 12, 1974, September 17,

1974 and September 18, 1974 respectively. There existed no constant

phase relationship at any one height.

r
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CONTOUR LINES OF ELECTRON DENSITY (Oxld t )

Figure 2 Electron Density as a Function of Atomic and
Molecular Oxygen Densities at Noon for an
Altitude of 100 km
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It would be very valuable if the amplitude and phase of the

tidal motions could be determined from electron density measure-

ments alone since they are available simultaneously at a large

number of stations over a long period of time and for a large variety

of conditions. It is the conclusion of this study that it is not possible

to do this.

3.3 Comparison of the Modeled and Measured Electron Densities

The basic shape of the measured electron densities in the

E-region varies as the secant of X , the solar zenith angle, however

there are deviations which can not be explained by a changing solar

zenith angle alone. An objective of this study was to investigate the

effect of neutral atmospheric variations on the electron density.

As stated in section 1. 2 care must be taken in using a solar flux

model for times other than when measured. The solar flux for one

day for all wavelength groups was multiplied by a constant in order

to obtain the level of ion density measured in the upper section of the

E-region where the gradient in electron density is about zero. The

density at all altitudes was multiplied by a constant in order to

obtain the level of ion density measured in the upper section of the

E-region where the gradient in electron density is about zero. The

density at all altitudes was multiplied by a constant in order to have

the proper altitude of the division between the upper and lower

regions.

The effects of measured temperature, density and vertical

ion motion were included in the model of electron density. The

inclusion of these variations did not consistently eliminate the
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discrepancies between the modeled and measured electron densities.

An attempt %vas made at reconciling the differences by varying the

relative amounts of atomic and molecular oxygen. To obtain a

good agreement a 45 per cent variation in molecular oxygen was

required for atomic oxygen. Variations of these magnitudes are

unexceptably large when compared with theoretical variations ;Mayr

and Volland, 1972) or measured variations (Alacayde et al. , 1972;

Lanilov, 1972 and Offerman, 1974). The difficulty in using atomic

and molecular oxygen to reconcile discrepancies between measured

and modeled electron densities was discus=ed by Monro, Nisbet

and Stick (1974) .I

^ The basic problem in an analysis of this type is the number

of independent variables. In the present problem the major	 W

uncertainties were in the relative densities of atomic and molecular

oxygen to the molecular nitrogen density and the spectrum of the

ELV solar flux. It would seem that further studies of this kind to be

profitable should be done in conjunction with a series of observations

such as those described by Torr et a.l., (1976) in which satellite

observations of these important parameters are made simultaneously

with the incoherent scatter measurements.

3.4 Spec.fic Conclusions

E--region density dependence on neutral at--nospheric param-

eters was determined for the upper and lower altitude ranges. The

results show that variations in temperature, density and pressure

cause variations in the electron density of comparable amounts.
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While the electron density in the lower region is sensitive to variations

in the relative molecular oxygen density it is sensitive to variations

in both atomic and molecular oxygen density in the upper region. The

effect of ion drift while small in the lower region is not negligible in

the upper region.

The effects of tides in atmospheric parameters or the electron

densities were studied with the objective of determining the feasibility

of rel^ ting measured electron density variations back to one or more

neutral atmospheric parameter variations. Since the major

contributing parameters have comparable effects and there exists no

t
fixed relationships between them, it can be concluded that tidal

variations in the atmospheric parameters can not be determined

from electron density variations alone.

The modeled electron densities including the effect of tempera-

ture, density and vertical ion drift measurements were compared with

measured values of electron density. Whiie some variations were

reproduced there existed differences between them. The basic

problem in determining the cause of discrepancies is the number of

independent variables. It is concluded that simultaneous measure-

ments of important parameters are necessary to sort out the causes

of these discrepancies.
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